Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
A comprehensive list of training resources from the HPC University. HPCU is a virtual organization whose primary goal is to provide a cohesive, persistent, and sustainable on-line environment to share educational and training materials for a continuum of high performance computing environments that span desktop computing capabilities to the highest-end of computing facilities offered by HPC centers.
This comprehensive workshop is designed to guide participants through the world of cryptography, from foundational concepts to advanced implementations. Starting with the basics of encryption, decryption, and hashing, the workshop discusses real-world applications like SSL, blockchain, and digital signatures. Interactive Python-based coding examples, such as symmetric and asymmetric encryption, will provide hands-on experience. Participants will also learn to identify cryptographic vulnerabilities and perform attacks like length extension. Finally, the workshop also explores future trends such as quantum cryptography and zero-knowledge proofs, providing participants with the knowledge to apply cryptography in securing modern digital systems. Ideal for beginners and intermediate learners alike, this workshop is a step-by-step journey into mastering cryptographic principles and practices.
Learn how to use Linux commands in a python script. Specifically, learn how to use the subprocess and os modules in python to run shell commands (which run Linux commands) in a python script that is run on a cluster.
This documentation contains introductory material on Python Programming for Digital Humanities and Computational Research. This can be a go-to material for a beginner trying to learn Python programming and for anyone wanting a Python refresher.
PyTorch is an optimized tensor computation library that supports automatic differentiation and is designed to accelerate deep learning research and production on both GPUs and CPUs. Built with flexibility and performance in mind, PyTorch provides a dynamic computational graph and a rich ecosystem of tools for building and deploying deep learning models.
Self-paced tutorials on high-end computing topics such as parallel computing, multi-core performance, and performance tools. Other related topics include 'Cybersecurity for End Users' and 'Developing Webinar Training.' Some of the tutorials also offer digital badges. Many of these tutorials were previously offered on CI-Tutor. A list of open access training courses are provided below.
Parallel Computing on High-Performance Systems
Profiling Python Applications
Using an HPC Cluster for Scientific Applications
Debugging Serial and Parallel Codes
Introduction to MPI
Introduction to OpenMP
Introduction to Visualization
Introduction to Performance Tools
Multilevel Parallel Programming
Introduction to Multi-core Performance
Using the Lustre File System
This tutorial shows how to set up an open-source customizable RAG chatbot to answer questions about documents you can choose. It uses Indiana's Jetstream 2 HPC, but should work on any major ACCESS HPC.
This beginner-friendly guide introduces Retrieval-Augmented Generation (RAG), a technique to enhance Large Language Models (LLMs) by integrating external data sources. It covers the fundamentals of AI, LLMs, and RAG, providing step-by-step instructions, examples, and visual aids. The guide also discusses tools like Milvus, Faiss, and LangChain, offering a practical approach to building smarter AI systems.
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. It makes analyzing and presenting your data extremely easy and works with Python which many people already know.
This tutorial demonstrates how to create, manage, and deploy containerized Jupyter simulations for High-Performance Computing (HPC) environments, specifically using SLAC's S3DF infrastructure. By utilizing Apptainer (formerly Singularity) containers, users can package complex simulations with all necessary dependencies, input files, and configurations, ensuring reproducibility and ease of use for new users. The automated workflows, powered by GitHub Actions, handle building and updating the containers, while Open OnDemand provides an accessible interface for running Jupyter notebooks directly from the HPC environment. This approach eliminates setup errors, saves time, and ensures consistent simulation environments, enabling researchers to focus on their work instead of system configuration.
This workshop will go into the different ways python packages can be managed in a cluster environment using conda and python virtual environments both in batch mode from the command line and with Jupyter Notebooks and Jupyter Lab on the cluster. The examples will be run on the GMU HOPPER Cluster.
Cornell Virtual Workshop is a comprehensive training resource for high performance computing topics. The Cornell University Center for Advanced Computing (CAC) is a leader in the development and deployment of Web-based training programs. Our Cornell Virtual Workshop learning platform is designed to enhance the computational science skills of researchers, accelerate the adoption of new and emerging technologies, and broaden the participation of underrepresented groups in science and engineering. Over 350,000 unique visitors have accessed Cornell Virtual Workshop training on programming languages, parallel computing, code improvement, and data analysis. The platform supports learning communities around the world, with code examples from national systems such as Frontera, Stampede2, and Jetstream2.
DeapSECURE is a training program to infuse high-performance computational techniques into cybersecurity research and education. It is an NSF-funded project of the ODU School of Cybersecurity along with the Department of Electrical and Computer Engineering and the Information Technology Services at ODU. The DeapSECURE team has developed six non-degree training modules to expose cybersecurity students to advanced CI platforms and techniques rooted in big data, machine learning, neural networks, and high-performance programming. Techniques taught in DeapSECURE workshops are rather general and transferable to other areas including science, engineering, finance, linguistics, etc. All lesson materials are made available as open-source educational resources.
This course from MIT OpenCourseWare (OCW) covers very basic information on how to get started with programming using Python. Lectures are available, along with practice assignments, to users at no cost. Python has many applications in tech today, from web frameworks to machine learning. This course will also instruct users on how to get set up with an IDE, which will allow for way more efficient debugging.
A lecture and notes with the goal of teaching introductory python. Starting by understanding how to download and start using python, then expanding to basic syntax for lists, arrays, loops, and methods.
These instructions were executed on the FASTER and Grace cluster computing facilities at Texas A&M University. However, the process can be applied to other clusters with similar environments. For local installation, please refer to the PyFR documentation.
Please note that these instructions were valid at the time of writing. Depending on the time you're executing these, the versions of the modules may need to be updated.
1. Loading Modules
The first step involves loading pre-installed software libraries required for PyFR. Execute the following commands in your terminal to load these modules:
module load foss/2022b
module load libffi/3.4.4
module load OpenSSL/1.1.1k
module load METIS/5.1.0
module load HDF5/1.13.1
2. Python Installation from Source
Choose a location for Python 3.11.1 installation, preferably in a .local directory. Navigate to the directory containing the Python 3.11.1 source code. Then configure and install Python:
cd $INSTALL/Python-3.11.1/
./configure --prefix=$LOCAL --enable-shared --with-system-ffi --with-openssl=/sw/eb/sw/OpenSSL/1.1.1k-GCCcore-11.2.0/ PKG_CONFIG_PATH=$LOCAL/pkgconfig LDFLAGS=/usr/lib64/libffi.so.6.0.2
make clean; make -j20; make install;
3. Virtual Environment Setup
A virtual environment allows you to isolate Python packages for this project from others on your system. Create and activate a virtual environment using:
pip3.11 install virtualenv
python3.11 -m venv pyfr-venv
. pyfr-venv/bin/activate
4. Install PyFR Dependencies
Several Python packages are required for PyFR. Install these packages using the following commands:
pip3 install --upgrade pip
pip3 install --no-cache-dir wheel
pip3 install --no-cache-dir botorch pandas matplotlib pyfr
pip3 uninstall -y pyfr
5. Install PyFR from Source
Finally, navigate to the directory containing the PyFR source code, and then install PyFR:
cd /scratch/user/sambit98/github/PyFR/
python3 setup.py develop
Congratulations! You've successfully set up PyFR on the FASTER and Grace cluster computing facilities. You should now be able to use PyFR for your computational fluid dynamics simulations.
This tutorial explains how to use Python for GPU acceleration with libraries like CuPy, PyOpenCL, and PyCUDA. It shows how these libraries can speed up tasks like array operations and matrix multiplication by using the GPU. Examples include replacing NumPy with CuPy for large datasets and using PyOpenCL or PyCUDA for more control with custom GPU kernels. It focuses on practical steps to integrate GPU acceleration into Python programs.
Snakemake is a powerful and versatile workflow management system that simplifies the creation, execution, and management of data analysis pipelines. It uses a user-friendly, Python-based language to define workflows, making it particularly valuable for automating and reproducibly managing complex computational tasks in research and data analysis.
The official documentation for PyTorch, a machine learning tensor-based framework, and NumPy, which allows for support for ndarrays which is useful to make tensors when implementing NNs. Both libraries can be installed with pip.
This technology lab contains a set of sessions to help a new user start an AI project on the ACES cluster, a composable accelerator testbed at Texas A&M University. You will learn how to create and activate a virtual environment, manipulate and visualize data with Pandas and Matplotlib, use Scikit-learn for linear regression and classification applications, and use Pytorch to create and train a simple image classification model with deep neural networks (DNN).
Computing Module: Introduces fundamental concepts and skills of Cyberinfrastructure (CI) and High-Performance Computing (HPC) to lower the barrier to becoming CI users in disaster management research. The module will cover the critical topics of CI and HPC with hands-on sessions.
Disaster Data Module: Introduces concepts of geospatial big data in disaster management. Students will learn how to access and process disaster data.
Geospatial Analytic Module: Introduces geospatial analytics skills to address real-world challenges in disaster management. The module will use the data introduced in the Disaster Data Module and cover various geospatial analytics topics such as geosimulation, spatial optimization, network analysis, terrain analysis, Geospatial Artificial Intelligence (GeoAI), social sensing, and CyberGIS.
Iterative Programming takes place when you can explore your code and play with your objects and functions without needing to save, recompile, or leave your development environment. This has traditionally been achieved with a REPL or an interactive shell. The magic of Jupyter Notebooks is that the interactive shell is saved as a persistant document, so you don't have to flip back and forth between your code files and the shell in order to program iteratively.
There are several editors and IDE's that are intended for notebook development, but JupyterLab is a natural choice because it is free and open source and most closely related to the Jupyter Notebooks/iPython projects. The chief motivation of this repository is to enable an IDE-like development environment through the use of extensions. There are also expositional notebooks to show off the usefulness of these features.
The Stan language is used to specify a (Bayesian) statistical model with an imperative program calculating the log probability density function. Here are some useful links to start your exploration of this statistical programming language, and a Python interface to Stan.
MATLAB is a really useful tool for data analysis among other computational work. This tutorial takes you through using MATLAB with other programming languages including C, C++, Fortran, Java, and Python.