Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
This Udacity article listed the most frequently used R packages for data science and statistics. For each package, the article provided the link to its official documentation. It will be a great start point if you want to start your data science journey in R.
DeapSECURE is a training program to infuse high-performance computational techniques into cybersecurity research and education. It is an NSF-funded project of the ODU School of Cybersecurity along with the Department of Electrical and Computer Engineering and the Information Technology Services at ODU. The DeapSECURE team has developed six non-degree training modules to expose cybersecurity students to advanced CI platforms and techniques rooted in big data, machine learning, neural networks, and high-performance programming. Techniques taught in DeapSECURE workshops are rather general and transferable to other areas including science, engineering, finance, linguistics, etc. All lesson materials are made available as open-source educational resources.
Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI Gene Expression Omnibus and GenBank.
This slices and videos introduced how to use K-Nearest-Neighbors method to impute climate data and how to use Bayesian Spatio-Temporal models in R-INLA to impute mortality data. The demos will be added soon.
This article discusses the importance of fairness in machine learning and provides insights into how Google approaches fairness in their ML models.
The article covers several key topics:
Introduction to fairness in ML: It provides an overview of why fairness is essential in machine learning systems, the potential biases that can arise, and the impact of biased models on different communities.
Defining fairness: The article discusses various definitions of fairness, including individual fairness, group fairness, and disparate impact. It explains the challenges in achieving fairness due to trade-offs and the need for thoughtful considerations.
Addressing bias in training data: It explores how biases can be present in training data and offers strategies to identify and mitigate these biases. Techniques like data preprocessing, data augmentation, and synthetic data generation are discussed.
Fairness in ML algorithms: The article examines the potential biases that can arise from different machine learning algorithms, such as classification and recommendation systems. It highlights the importance of evaluating and monitoring models for fairness throughout their lifecycle.
Fairness tools and resources: It showcases various tools and resources available to practitioners and developers to help measure, understand, and mitigate bias in machine learning models. Google's TensorFlow Extended (TFX) and What-If Tool are mentioned as examples.
Google's approach to fairness: The article highlights Google's commitment to fairness and the steps they take to address fairness challenges in their ML models. It mentions the use of fairness indicators, ongoing research, and partnerships to advance fairness in AI.
Overall, the article provides a comprehensive overview of fairness in machine learning and offers insights into Google's approach to building fair ML models.
This tutorial is essentially the "hello world" of image recognition and feed-forward neural network (using PyTorch). Using the MNIST database (filled within images of handwritten digits), the tutorial will instruct how to build a feed-forward neural network that can recognize handwritten digits. A solid understanding of feed-forward and back-propagation is recommended.
MediaPipe is Google's open-source framework for building multimodal (e.g., video, audio, etc.) machine learning pipelines. It is highly efficient and versatile, making it perfect for tasks like gesture recognition.
This is a tutorial on how to make a custom model for gesture recognition tasks based on the Google MediaPipe API. This tutorial is specifically for video-playback, though could be generalized to image and live-video feed recognition.
Scikit-learn is free software machine learning library for Python. It has a variety of features you can use on data, from linear regression classifiers to xg-boost and random forests. It is very useful when you want to analyze small parts of data quickly.
These links take you to visualization resources supported by the University of Arizona's HPC visualization consultant ([rtdatavis.github.io](http://rtdatavis.github.io/)). The following links are specific to the Paraview program and the workflows that have been used my researchers at the U of Arizona. These links are distinct from the others posted in the beginner paraview access ci links from the University of Arizona in that they are for more complex workflows. The links included explain how to use the terminal with paraview (pvpython), and the steps to leverage HPC resources for headless batch rendering. The batch rendering tutorial is significantly more complex than the others so if you find yourself stuck please post on the https://ask.cyberinfrastructure.org/ and I will try to troubleshoot with you.
This workshop has an introduction to the concepts of visualization followed by hands on exercises. The concepts section has Speaker Notes, and the hands on section has an accompanying Jupyter notebook.
The workshop is one in a series of Introduction to HPC
Astropy is a community-driven package that offers core functionalities needed for astrophysical computations and data analysis. From coordinate transformations to time and date handling, unit conversions, and cosmological calculations, Astropy ensures that astronomers can focus on their research without getting bogged down by the intricacies of programming. This guide walks you through practical usage of astropy from CCD data reduction to computing galactic orbits of stars.
This repository offers accessible resources and workshops on AI and high-performance computing (HPC), designed for both STEM and non-STEM majors. The materials are presented in simple language, requiring no prior technical background, making them suitable for a wide range of learners. The focus is on bridging the AI digital gap and enabling participants to harness the power of AI and HPC for research, innovation, and discovery.
These links take you to visualization resources supported by the University of Arizona's HPC visualization consultant (rtdatavis.github.io). The following links are specific to the Paraview program and the workflows that have been used my researchers at the U of Arizona. Some of the pages linked are very beginner friendly: getting started, working with cameras and keyframes for rendering, visualizing external files (netcdf climate data), graphs and data exporting.
Many of the workflows involve using remote desktops via the Open On Demand interface, but if this isn't set up at your university you can use paraview locally on a desktop. Feel free to post on access ci https://ask.cyberinfrastructure.org/ if you need assistance getting a paraview gui open for your work on HPC.
R for Data Science is a comprehensive resource for individuals looking to harness the power of the R programming language for data analysis, visualization, and statistical modeling. Whether you're a beginner or an experienced data scientist, this guide will help you unlock the full potential of R in the realm of data science.
Plots.jl is the most widely used plotting library for the Julia programming language. It's known for being especially powerful in its versatility and intuitiveness. It's limited set of dependencies and wide applicability across different graphics packages make it especially helpful in visualizing the results of your latest Julia implementation.
However, there are still multiple options available for Julia programmers to visualize their datasets. The second link details a comparison against a variety of Julia packages.
Iterative Programming takes place when you can explore your code and play with your objects and functions without needing to save, recompile, or leave your development environment. This has traditionally been achieved with a REPL or an interactive shell. The magic of Jupyter Notebooks is that the interactive shell is saved as a persistant document, so you don't have to flip back and forth between your code files and the shell in order to program iteratively.
There are several editors and IDE's that are intended for notebook development, but JupyterLab is a natural choice because it is free and open source and most closely related to the Jupyter Notebooks/iPython projects. The chief motivation of this repository is to enable an IDE-like development environment through the use of extensions. There are also expositional notebooks to show off the usefulness of these features.
Pandas is one of the most essential Python libraries for data analysis and manipulation. It provides high-performance, easy-to-use data structures, and data analysis tools for the Python programming language. The official documentation serves as an in-depth guide to using this powerful tool including explanations and examples.
This technology lab contains a set of sessions to help a new user start an AI project on the ACES cluster, a composable accelerator testbed at Texas A&M University. You will learn how to create and activate a virtual environment, manipulate and visualize data with Pandas and Matplotlib, use Scikit-learn for linear regression and classification applications, and use Pytorch to create and train a simple image classification model with deep neural networks (DNN).
Data visualization is a critical aspect of data analysis. It allows for a clear and concise representation of data, making it easier for users to understand and interpret complex datasets. One of the most popular libraries for data visualization in Python is Matplotlib. The included website aims to provide a brief overview of Matplotlib, its features, and examples/exercises to dive deeper into its functionalities.
Computing Module: Introduces fundamental concepts and skills of Cyberinfrastructure (CI) and High-Performance Computing (HPC) to lower the barrier to becoming CI users in disaster management research. The module will cover the critical topics of CI and HPC with hands-on sessions.
Disaster Data Module: Introduces concepts of geospatial big data in disaster management. Students will learn how to access and process disaster data.
Geospatial Analytic Module: Introduces geospatial analytics skills to address real-world challenges in disaster management. The module will use the data introduced in the Disaster Data Module and cover various geospatial analytics topics such as geosimulation, spatial optimization, network analysis, terrain analysis, Geospatial Artificial Intelligence (GeoAI), social sensing, and CyberGIS.